๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

CNN2

[๋”ฅ๋Ÿฌ๋‹] Convolution Neural Network (CNN) ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง - ๊ฐ„๋‹จํ•˜๊ณ  ์‰ฝ๊ฒŒ ์ดํ•ดํ•˜๊ธฐ Convolution Neural Network (CNN) ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง CNN Dense ๋ ˆ์ด์–ด = ์—ฐ์‚ฐ์„ ๋‹ด๋‹นํ•˜๋Š” ๋ ˆ์ด์–ด์ด๊ณ . CNN = ๋“ค์–ด์˜ค๋Š” ๋ฐ์ดํ„ฐ(features)์— ๋Œ€ํ•œ ํŠน์„ฑ์„ ์ถ”์ถœํ•˜๋Š” ๋ ˆ์ด์–ด์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋ธ๋ง์„ ํ•  ๋•Œ์— ํŠน์„ฑ ์ถ”์ถœ์„ ๋จผ์ €ํ•œ ํ›„ ์—ฐ์‚ฐ์„ ํ•ด์•ผํ•˜๋‹ˆ ์œ—๋ถ€๋ถ„์ด ํŠน์„ฑ์„ ์ถ”์ถœํ•˜๋Š” ๋ ˆ์ด์–ด๊ฐ€ ์ž๋ฆฌ์žก๊ณ  ์•„๋žซ๋ถ€๋ถ„์ด ์—ฐ์‚ฐ์„ ๋‹ด๋‹นํ•˜๋Š” ๋ ˆ์ด์–ด๊ฐ€ ์ž๋ฆฌ์žก๋Š”๋‹ค. input ๋ ˆ์ด์–ด๋Š” ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด์„œ ๊ตด๊ณก ๋“ฑ..ํŠน์„ฑ์„ ์ถ”์ถœํ•˜๊ณ  ๊ทธ ์ถ”์ถœํ•œ ์ด๋ฏธ์ง€๋ฅผ ๋ชจ์•„๋‘” ๊ฒƒ์„ feature maps๋ผ๊ณ  ํ•œ๋‹ค. ๊ณ„์† cnn์ธต์„ ๊นŠ๊ฒŒ์Œ“์œผ๋ฉด์„œ ํŠน์„ฑ ์ถ”์ถœ์„ ํ•ด๊ฐ€๋Š” ๊ฒƒ์ด ์œ„ ๊ทธ๋ฆผ์— ๋Œ€ํ•œ ์„ค๋ช…์ด๋‹ค. ์—ฌ๊ธฐ๊นŒ์ง€๊ฐ€ CNN์˜ ๊ธฐ๋ณธ ๊ฐœ๋… ๋! Dense VS CNN ์˜ˆ๋ฅผ๋“ค์–ด ๊ณ ์–‘์ด ์‚ฌ์ง„์„ ๊ฐ€์ง€๊ณ  ์ด ์‚ฌ์ง„์ด ๊ณ ์–‘์ธ์ง€ ์•„๋‹Œ์ง€๋ฅผ ์•Œ ์ˆ˜ ์žˆ๋Š”.. 2022. 2. 17.
[๋”ฅ๋Ÿฌ๋‹] classification neural network(๋ถ„๋ฅ˜์‹ ๊ฒฝ๋ง) [๋”ฅ๋Ÿฌ๋‹] classification neural network(๋ถ„๋ฅ˜์‹ ๊ฒฝ๋ง) ๋จธ์‹ ๋Ÿฌ๋‹, ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์˜ ์œ ํ˜•์€ ํฌ๊ฒŒ ๋ถ„๋ฅ˜(Classification)๊ณผ ํšŒ๊ท€(regression)์œผ๋กœ ๋‚˜๋ˆ ์ง„๋‹ค. ๊ทธ ์ค‘ Classification neural network๋ฅผ ์†Œ๊ฐœํ•ด๋ณด๊ฒ ๋‹ค. ๋ถ„๋ฅ˜(Classification)๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋А ๋ฒ”์ฃผ์— ์†ํ•˜๋Š”์ง€ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ ์ค‘ ์˜ค๋Š˜์€ ๊ฐ€์žฅ ๊ธฐ๋ณธ๋ฐ์ดํ„ฐ์ธ ์™€์ธ์€ ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹ ๊ฒฝ๋ง ๋ชจํ˜•์„ ๋งŒ๋“ค์–ด๋ณด๊ฒ ๋‹ค. random seed ์„ค์ • ์ผ๊ด€๋œ ๊ฒฐ๊ณผ๊ฐ’์ด ๋‚˜์˜ค๋„๋ก ๋žœ๋ค ์‹œ๋“œ๋ฅผ ์„ค์ •ํ•ด์ค˜์•ผํ•œ๋‹ค. numpy์™€ tensorflow๋ฅผ importํ•˜๊ณ  ๊ฐ๊ฐ ๋žœ๋ค ์‹œ๋“œ๊ฐ’์„ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์ƒ์„ฑํ•œ๋‹ค. import numpy as np import tensorflow as tf np.ran.. 2022. 1. 24.
๋ฐ˜์‘ํ˜•