๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

Recurrent Neural Network1

[๋”ฅ๋Ÿฌ๋‹] RNN (Recurrent Neural Network) - ์ˆœํ™˜์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ [๋”ฅ๋Ÿฌ๋‹] RNN (Recurrent Neural Network) - ์ˆœํ™˜์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ RNN์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ฅผ ํ•œ๋‹ค๋˜์ง€, ์ฃผ๊ฐ€ ์˜ˆ์ธก์„ ํ•œ๋‹ค๋˜์ง€ ์‹œ๊ฐ„์˜ ํ๋ฆ„์ด ๋งค์šฐ ์ค‘์š”ํ•œ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•œ ๋ชจ๋ธ์ด๋‹ค. ๊ธฐ๋ณธ์ ์ธ RNN ๊ตฌ์กฐ๋„์ด๋‹ค. ํ•˜๋‚˜์”ฉ ๋œฏ์–ด๋ณด๋ฉด ์ธํ’‹๊ฐ’์ด X0์œผ๋กœ ๋“ค์–ด๊ฐ€์„œ -> A์—์„œ ์–ด๋–ค ๊ฐ€์ค‘์น˜(w)์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์ด ๋˜๊ณ , -> ๊ฒฐ๊ณผ๊ฐ’์ด h0์ด๋œ๋‹ค. -> ์ฒซ๋ฒˆ์งธ A ๊ฐ€์ค‘์น˜(w)๊ฐ€ ๋‘๋ฒˆ์งธ A๋กœ ์ „๋‹ฌ์ด ๋˜๋ฉด์„œ ์ธํ’‹๊ฐ’ X1๊ณผ ํ•ฉ์ณ์ ธ๊ณ  -> ๊ฒฐ๊ณผ๊ฐ’ h1์ด ๋œ๋‹ค. -> ๋‘๋ฒˆ์งธ A ๊ฐ€์ค‘์น˜๊ฐ€ ์„ธ๋ฒˆ์งธ A๋กœ ์ „๋‹ฌ์ด ๋˜๊ณ  ์ธํ’‹๊ฐ’ X2์™€ ํ•ฉ์ณ์ง€๊ณ ... ์ด๋Ÿฐ์‹์œผ๋กœ ๊ณ„์† ์ „๋‹ฌ ์ „๋‹ฌ ์ „๋‹ฌ...์ด ๋˜๋Š” ๊ตฌ์กฐ์ธ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์œ„์— ๊ธฐ๋ณธ์ ์ธ ๊ตฌ์กฐ๋ฅผ Vanilla RNN์ด๋ผ๊ณ  ํ•œ๋‹ค. ๊ฐ€์žฅ ์ดˆ๊ธฐ ๋ฒ„์ „์ด๋‹ค. ์ด Vanilla RN.. 2022. 2. 24.
๋ฐ˜์‘ํ˜•