๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

์ธ๊ณต์‹ ๊ฒฝ๋ง2

[๋”ฅ๋Ÿฌ๋‹] classification neural network(๋ถ„๋ฅ˜์‹ ๊ฒฝ๋ง) [๋”ฅ๋Ÿฌ๋‹] classification neural network(๋ถ„๋ฅ˜์‹ ๊ฒฝ๋ง) ๋จธ์‹ ๋Ÿฌ๋‹, ๋”ฅ๋Ÿฌ๋‹์˜ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์˜ ์œ ํ˜•์€ ํฌ๊ฒŒ ๋ถ„๋ฅ˜(Classification)๊ณผ ํšŒ๊ท€(regression)์œผ๋กœ ๋‚˜๋ˆ ์ง„๋‹ค. ๊ทธ ์ค‘ Classification neural network๋ฅผ ์†Œ๊ฐœํ•ด๋ณด๊ฒ ๋‹ค. ๋ถ„๋ฅ˜(Classification)๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ์–ด๋А ๋ฒ”์ฃผ์— ์†ํ•˜๋Š”์ง€ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด๋‹ค. ๊ทธ ์ค‘ ์˜ค๋Š˜์€ ๊ฐ€์žฅ ๊ธฐ๋ณธ๋ฐ์ดํ„ฐ์ธ ์™€์ธ์€ ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹ ๊ฒฝ๋ง ๋ชจํ˜•์„ ๋งŒ๋“ค์–ด๋ณด๊ฒ ๋‹ค. random seed ์„ค์ • ์ผ๊ด€๋œ ๊ฒฐ๊ณผ๊ฐ’์ด ๋‚˜์˜ค๋„๋ก ๋žœ๋ค ์‹œ๋“œ๋ฅผ ์„ค์ •ํ•ด์ค˜์•ผํ•œ๋‹ค. numpy์™€ tensorflow๋ฅผ importํ•˜๊ณ  ๊ฐ๊ฐ ๋žœ๋ค ์‹œ๋“œ๊ฐ’์„ ์ƒ์„ฑํ•˜๋Š” ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์ƒ์„ฑํ•œ๋‹ค. import numpy as np import tensorflow as tf np.ran.. 2022. 1. 24.
[๋”ฅ๋Ÿฌ๋‹] batch size(๋ฐฐ์น˜์‚ฌ์ด์ฆˆ) VS epoch(์—ํฌํฌ) VS iteration(๋ฐ˜๋ณต) [๋”ฅ๋Ÿฌ๋‹] batch size(๋ฐฐ์น˜์‚ฌ์ด์ฆˆ) VS epoch(์—ํฌํฌ) VS iteration(๋ฐ˜๋ณต) ๋”ฅ๋Ÿฌ๋‹์„ ํ•™์Šตํ•˜๋Š” ์ฝ”๋“œ์ด๋‹ค. hist = model.fit(x_tn, y_tn, epochs =10, batch_size = 100) ๋”ฅ๋Ÿฌ๋‹์„ ํ•™์Šตํ•˜๋Š” ๊ณผ์ •์—์„œ epoch์™€ batch size, interation์„ ์‚ฌ์šฉํ•œ๋‹ค. ์„œ๋กœ ๋น„์Šทํ•ด ๋ณด์—ฌ์„œ ๊ฐœ๋…์ด ์•„์ฃผ ์กฐ๊ธˆ ํ—ท๊ฐˆ๋ฆฐ๋‹ค. batch size ์ „์ฒด ํŠธ๋ ˆ์ด๋‹ ๋ฐ์ดํ„ฐ๋ฅผ ์—ฌ๋Ÿฌ๊ฐœ์˜ mini batch๋กœ ๋‚˜๋ˆ„์—ˆ์„ ๋•Œ ํ•˜๋‚˜์˜ ๋ฏธ๋‹ˆ ๋ฐฐ์น˜์— ์†ํ•˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๋ฅผ ๋งํ•œ๋‹ค. ๊ทธ๋ฆผ์„ ์„ค๋ช…ํ•˜์ž๋ฉด, train data 700๊ฐœ๋Š” ๊ฐ๊ฐ 100๊ฐœ๋กœ ๋‚˜๋ˆ ์ง„ mini batch๊ฐ€ 7๊ฐœ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๋‹ค. ๊ฐ mini batch๋Š” 100๊ฐœ์˜ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋กœ ๊ตฌ์„ฑ๋˜์–ด์žˆ๊ณ  ์ด๋ฅผ batch si.. 2022. 1. 22.
๋ฐ˜์‘ํ˜•