๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

์‹œ๊ณ„์—ด3

[๋”ฅ๋Ÿฌ๋‹] LSTM(Long Short Term Memory) [๋”ฅ๋Ÿฌ๋‹] LSTM(Long Short Term Memory) LSTM์˜ ๊ตฌ์กฐ๋„ ์ด๋‹ค. ์•ž์„  RNN์˜ ๊ตฌ์กฐ์™€ ํฌ๊ฒŒ ๋ณ„ ๋‹ค๋ฅผ๊ฒŒ ์—†์–ด ๋ณด์ด์ง€๋งŒ ์ž์„ธํžˆ ๋ณด๋ฉด ๋ฌด์–ธ๊ฐ€๊ฐ€ ์ถ”๊ฐ€ ๋๋‹ค. RNN์€ A๋กœ ๋„˜์–ด๊ฐ€๋Š” ์„ ? (ํ™”์‚ดํ‘œ)์ด ํ•˜๋‚˜์ง€๋งŒ LSTM์€ ํ•œ ์ค„์ด ๋” ์ƒ๊ฒผ๋‹ค. ์œ—์ชฝ ์„ ์€ Long Term Memory(์žฅ๊ธฐ๊ธฐ์–ต) ์•„๋žซ์ชฝ ์„ ์€ Short Term Memory(๋‹จ๊ธฐ๊ธฐ์–ต) ์ด๋‹ค. ์ž ์‹œ Vanilla RNN์˜ ๋ฌธ์ œ์ ์„ ์ƒ๊ฐํ•ด๋ณด์ž๋ฉด ์ฒซ ์ธํ’‹ ๋ฐ์ดํ„ฐ์˜ A(weight)๊ฐ€ ๋งˆ์ง€๋ง‰๊นŒ์ง€ ๋ชป๊ฐ„๋‹ค๋Š” ๊ฒƒ์ด์˜€๋‹ค. ํ•˜์ง€๋งŒ, LSTM์—์„œ๋Š” ์ค‘์š”๋„๊ฐ€ ๋†’์€ ์ธํ’‹๋ฐ์ดํ„ฐ๋ฅผ Long Term Memory์— ๋„ฃ์–ด์คŒ์œผ๋กœ์จ weight์˜ ๊ฐ’์ด ๋งˆ์ง€๋ง‰๊นŒ์ง€ ์œ ์ง€๋  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด์ค€๋‹ค. A์•ˆ์—๋Š” ๋ณต์žกํ•œ ๊ฒŒ์ดํŠธ๋“ค์ด ๋‹ค์–‘ํ•˜๊ฒŒ ์žˆ๋‹ค. ๋งŒ์•ฝ Long Term Memo.. 2022. 2. 25.
[๋”ฅ๋Ÿฌ๋‹] RNN (Recurrent Neural Network) - ์ˆœํ™˜์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ [๋”ฅ๋Ÿฌ๋‹] RNN (Recurrent Neural Network) - ์ˆœํ™˜์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ RNN์€ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ฅผ ํ•œ๋‹ค๋˜์ง€, ์ฃผ๊ฐ€ ์˜ˆ์ธก์„ ํ•œ๋‹ค๋˜์ง€ ์‹œ๊ฐ„์˜ ํ๋ฆ„์ด ๋งค์šฐ ์ค‘์š”ํ•œ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•œ ๋ชจ๋ธ์ด๋‹ค. ๊ธฐ๋ณธ์ ์ธ RNN ๊ตฌ์กฐ๋„์ด๋‹ค. ํ•˜๋‚˜์”ฉ ๋œฏ์–ด๋ณด๋ฉด ์ธํ’‹๊ฐ’์ด X0์œผ๋กœ ๋“ค์–ด๊ฐ€์„œ -> A์—์„œ ์–ด๋–ค ๊ฐ€์ค‘์น˜(w)์— ๋Œ€ํ•œ ๊ณ„์‚ฐ์ด ๋˜๊ณ , -> ๊ฒฐ๊ณผ๊ฐ’์ด h0์ด๋œ๋‹ค. -> ์ฒซ๋ฒˆ์งธ A ๊ฐ€์ค‘์น˜(w)๊ฐ€ ๋‘๋ฒˆ์งธ A๋กœ ์ „๋‹ฌ์ด ๋˜๋ฉด์„œ ์ธํ’‹๊ฐ’ X1๊ณผ ํ•ฉ์ณ์ ธ๊ณ  -> ๊ฒฐ๊ณผ๊ฐ’ h1์ด ๋œ๋‹ค. -> ๋‘๋ฒˆ์งธ A ๊ฐ€์ค‘์น˜๊ฐ€ ์„ธ๋ฒˆ์งธ A๋กœ ์ „๋‹ฌ์ด ๋˜๊ณ  ์ธํ’‹๊ฐ’ X2์™€ ํ•ฉ์ณ์ง€๊ณ ... ์ด๋Ÿฐ์‹์œผ๋กœ ๊ณ„์† ์ „๋‹ฌ ์ „๋‹ฌ ์ „๋‹ฌ...์ด ๋˜๋Š” ๊ตฌ์กฐ์ธ ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์œ„์— ๊ธฐ๋ณธ์ ์ธ ๊ตฌ์กฐ๋ฅผ Vanilla RNN์ด๋ผ๊ณ  ํ•œ๋‹ค. ๊ฐ€์žฅ ์ดˆ๊ธฐ ๋ฒ„์ „์ด๋‹ค. ์ด Vanilla RN.. 2022. 2. 24.
[๋”ฅ๋Ÿฌ๋‹] Windowed Dataset ๊ตฌ์„ฑ ์˜ต์…˜ ( Tensorflow ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ๋ถ„์„) / ๋”ฅ๋Ÿฌ๋‹ ๋ฏธ๋ž˜ ์˜ˆ์ธกํ•˜๊ธฐ Windowed Dataset Tensorflow ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ๋ถ„์„ window size (์œˆ๋„์šฐ ๊ตฌ์„ฑ) [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ๋ผ๋Š” ๋ฐ์ดํ„ฐ๋“ค์ด ์žˆ์„ ๋•Œ ์ฒซ ๋ฒˆ์งธ๋ถ€ํ„ฐ ๋‹ค์„ฏ๋ฒˆ์งธ์˜ ๋ฐ์ดํ„ฐ, ์ฆ‰ 0, 1, 2, 3, 4๋ฅผ ๊ฐ€์ง€๊ณ  6๋ฒˆ์งธ ๋ฐ์ดํ„ฐ 5์˜ ๊ฐ’์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ window_size = 5๋ผ๊ณ  ํ•œ๋‹ค. shift ์œ„์—์„œ shift = 1 ์ด๋ผ๋Š” ์˜ต์…˜์„ ์ฃผ๋ฉด [ 0, 1, 2, 3, 4 ] -> 5 [ 1, 2, 3, 4, 5 ] -> 6 [ 2, 3, 4, 5, 6 ] -> 7 [ 3, 4, 5, 6, 7 ] -> 8 [ 4, 5, 6, 7, 8 ] -> 9 ์ด๋Ÿฐ์‹์œผ๋กœ ์˜ˆ์ธกํ•˜๊ฒŒ ๋œ๋‹ค. shift = 2 ๋ผ๋ฉด, [ 0, 1, 2, 3, 4 ] -> 5 [ 2,.. 2022. 2. 22.
๋ฐ˜์‘ํ˜•